A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy.

نویسندگان

  • S M Zuberi
  • L H Eunson
  • A Spauschus
  • R De Silva
  • J Tolmie
  • N W Wood
  • R C McWilliam
  • J B Stephenson
  • D M Kullmann
  • M G Hanna
چکیده

Episodic ataxia type 1 (EA1) is a rare autosomal dominant disorder characterized by brief episodes of ataxia associated with continuous interattack myokymia. Point mutations in the human voltage-gated potassium channel (Kv1.1) gene on chromosome 12p13 have recently been shown to associate with EA1. A Scottish family with EA1 harbouring a novel mutation in this gene is reported. Of the five affected individuals over three generations, two had partial epilepsy in addition to EA1. The detailed clinical, electrophysiological and molecular genetic findings are presented. The heterozygous point mutation is located at nucleotide position 677 and results in a radical amino acid substitution at a highly conserved position in the second transmembrane domain of the potassium channel. Functional studies indicated that mutant subunits exhibited a dominant negative effect on potassium channel function and would be predicted to impair neuronal repolarization. Potassium channels determine the excitability of neurons and blocking drugs are proconvulsant. A critical review of previously reported EA1 families shows an over-representation of epilepsy in family members with EA1 compared with unaffected members. These observations indicate that this mutation is pathogenic and suggest that the epilepsy in EA1 may be caused by the dysfunctional potassium channel. It is possible that such dysfunction may be relevant to other epilepsies in man.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel KCNA1 mutation causing episodic ataxia type I.

We describe the clinical phenotype of a novel de novo KNCA1 mutation, and functional characterization of the effects of the mutation on Kv1.1 channel function. HEK293 cells were transfected transiently with either wild-type or mutant channels. Representative currents were evoked after application of a series of square voltage steps from -80 mV to +50 mV in 200-ms intervals from Vh = -80 mV. Ext...

متن کامل

Mutations underlying Episodic Ataxia type-1 antagonize Kv1.1 RNA editing

Adenosine-to-inosine RNA editing in transcripts encoding the voltage-gated potassium channel Kv1.1 converts an isoleucine to valine codon for amino acid 400, speeding channel recovery from inactivation. Numerous Kv1.1 mutations have been associated with the human disorder Episodic Ataxia Type-1 (EA1), characterized by stress-induced ataxia, myokymia, and increased prevalence of seizures. Three ...

متن کامل

The episodic ataxia type 1 mutation I262T alters voltage-dependent gating and disrupts protein biosynthesis of human Kv1.1 potassium channels

Voltage-gated potassium (Kv) channels are essential for setting neuronal membrane excitability. Mutations in human Kv1.1 channels are linked to episodic ataxia type 1 (EA1). The EA1-associated mutation I262T was identified from a patient with atypical phenotypes. Although a previous report has characterized its suppression effect, several key questions regarding the impact of the I262T mutation...

متن کامل

Episodic ataxia type 1 mutations differentially affect neuronal excitability and transmitter release.

Heterozygous mutations of KCNA1, the gene encoding potassium channel Kv1.1 subunits, cause episodic ataxia type 1 (EA1), which is characterized by paroxysmal cerebellar incoordination and interictal myokymia. Some mutations are also associated with epilepsy. Although Kv1.1-containing potassium channels play important roles in neuronal excitability and neurotransmitter release, it is not known h...

متن کامل

A Disease Mutation Causing Episodic Ataxia Type I in the S1 Links Directly to the Voltage Sensor and the Selectivity Filter in Kv Channels.

UNLABELLED The mutation F184C in Kv1.1 leads to development of episodic ataxia type I (EA1). Although the mutation has been said to alter activation kinetics and to lower expression, we show here that the underlying molecular mechanisms may be more complex. Although F184 is positioned in the "peripheral" S1 helix, it occupies a central position in the 3D fold. We show in cut-open oocyte voltage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 122 ( Pt 5)  شماره 

صفحات  -

تاریخ انتشار 1999